Abstract

AbstractIt is important to understand the genetic gain achieved through selection of key yield traits for planning future breeding strategies in developing high yielding wheat (Triticum aestivum L.) cultivars. The aim of this study was to characterize the genetic changes and genotype × environment (G×E) interaction by additive main effect and multiplicative interactions (AMMI) for morphological, physiological, and yield component traits under five environments using 24 wheat cultivars released from 1911 to 2016 in Pakistan. There was a significant increase in grain yield (9.03 kg ha−1 yr−1, 0.37%), and plant height was reduced linearly (−0.26 cm yr−1, −0.33%). The traits waxiness, leaf rolling, harvest index, spike length, and grains per spike significantly increased but the gain was only 0.16–0.2% per year. Analysis of variance revealed that genotype, environment, and G×E interaction were highly significant (P < .01) for all traits except relative chlorophyll content, biomass, days to maturity, and number of spikes. Gene‐specific markers identified the durable resistance gene Lr67/Yr46/Sr55/Pm46 in obsolete cultivars as early as 1911, whereas the photoperiod‐insensitive allele Ppd‐D1a and reduced height alleles Rht‐B1b and Rht‐D1b were present only in the post‐1965 cultivars. Diversity analysis based on a 50K single nucleotide polymorphism genotyping array clearly differentiated temporal patterns in 24 cultivars, which was correlated with the agronomic performance of the cultivars. This dataset provided detailed insight into the performance of historical wheat cultivars and could help in devising wheat breeding strategies to focus on the traits contributing to grain yield and have slower rate of genetic progress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call