Abstract
Data mining is most commonly used in attempts to induce association rules from transaction data. Since transactions in real-world applications usually consist of quantitative values, many fuzzy association-rule mining approaches have been proposed on single- or multiple-concept levels. However, the given membership functions may have a critical influence on the final mining results. In this paper, we propose a multiple-level genetic-fuzzy mining algorithm for mining membership functions and fuzzy association rules using multiple-concept levels. It first encodes the membership functions of each item class (category) into a chromosome according to the given taxonomy. The fitness value of each individual is then evaluated by the summation of large 1-itemsets of each item in different concept levels and the suitability of membership functions in the chromosome. After the GA process terminates, a better set of multiple-level fuzzy association rules can then be expected with a more suitable set of membership functions. Experimental results on a simulation dataset also show the effectiveness of the algorithm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.