Abstract

This study is concerned with the Boolean satisfiability (SAT) problem and its solution in setting a hybrid computational intelligence environment of genetic and fuzzy computing. In this framework, fuzzy sets realize an embedding principle meaning that original two-valued (Boolean) functions under investigation are extended to their continuous counterparts resulting in the form of fuzzy (multivalued) functions. In the sequel, the SAT problem is reformulated for the fuzzy functions and solved using a genetic algorithm (GA). It is shown that a GA, especially its recursive version, is an efficient tool for handling multivariable SAT problems. Thorough experiments revealed that the recursive version of the GA can solve SAT problems with more than 1000 variables.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.