Abstract

The effects of long-term storage conditions on the viability and genetic fidelity of plant somatic tissues are poorly known. In this study, the effects of three storage methods (tissue culture, cold storage and cryostorage) on genetic fidelity and shoot apex viability were evaluated for Anigozanthos viridis subspp. terraspectans (Haemodoraceae), a threatened plant from south west Australia. Genetic fidelity was assessed following 12 months of storage using the PCR-based multi-locus DNA fingerprinting technique Amplified Fragment Length Polymorphism (AFLP). Shoot apex viability was evaluated at 0, 3, 6 and 12 months for cryogenically stored material. The AFLP technique generated a total of 95 fragments for three primer pairs, and no differences were detected across treatments. Post-cryostorage viability was high (mean=85%) and not significantly different across storage times. These results show that genetic fidelity and shoot apex viability (for cryopreserved material) were maintained following tissue culture, cold storage and cryostorage of A. viridis subspp. terraspectans for up to 12 months.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.