Abstract

The Bacillus subtilis sigI-rsgI operon encodes the heat-inducible sigma factor SigI and its cognate anti-sigma factor RsgI. The heat-activated SigI positively regulates expression of sigI itself and genes involved in cell wall homeostasis and heat resistance. It remains unknown which protease(s) may contribute to degradation of RsgI and heat-induced activation of SigI. In this study, we found that transcription of sigI from its σI-dependent promoter under heat stress was downregulated in a strain lacking the heat-inducible sigma factor SigB. Deletion of protease-relevant clpP, clpC or rasP severely impaired sigI expression during heat stress, whereas deletion of clpE partially impaired sigI expression. Complementation of mutations with corresponding intact genes restored sigI expression. In a null mutant of rsgI, SigI was activated and sigI expression was strongly upregulated during normal growth and under heat stress. In this rsgI mutant, further inactivation of rasP or clpE did not affect sigI expression, whereas further inactivation of clpP or clpC severely or partially impaired sigI expression. Spx negatively influenced sigI expression during heat stress. Possible implications are discussed. Given that clpC, clpP and spx are directly regulated by SigB, SigB appears to control sigI expression under heat stress via ClpC, ClpP and Spx.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.