Abstract

Cholera toxin, using [32P]NAD+ as substrate, specifically radiolabels at least two proteins in plasma membranes of wild type S49 mouse lymphoma cells. The toxin-specific substrates are detectable by sodium dodecyl sulfate-polyacrylamide gel electrophoresis as bands corresponding to molecular weights of 45,000 and a doublet of 52,000 to 53,000. Membranes of two other cell types exhibit similar patterns of radiolabeled bands specifically produced by incubation with cholera toxin: the "uncoupled" variant S49 cell, which possesses adenylate cyclase activity unresponsive to hormones, and the HTC4 rat hepatoma cell, which lacks detectable catalytic adenylate cyclase activity but contains components of the cyclase system necessary for regulation by guanyl nucleotides and NaF. Little or no toxin-specific radiolabeling is observed in membranes of a fourth cell type, the adenylate cyclase activity-deficient S49 variant, which functionally lacks components of the cyclase system involved in cholera toxin action and regulation by guanyl nucleotides and NaF. The toxin-specific labeling pattern is not observed in membranes prepared from wild type S49 cells previously treated with cholera toxin in culture. One or both of the toxin substrates thus appears to be involved in regulation of adenylate cyclase by guanyl nucleotides and fluoride ion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.