Abstract

A catalytically inactive mutant of hen egg white lysozyme was constructed by site-directed mutagenesis to elucidate the role of enzymatic activity on its antimicrobial activity against Gram-positive bacteria. The catalytic residue aspartic acid at position 52 of lysozyme was substituted with serine (D52S-Lz) and the mutant cDNA was inserted into a yeast expression vector, pYES-2. Western blot analysis indicated that the mutation did not affect secretion of the D52S-Lz lysozyme into the medium of the expressing Saccharomyces cerevisiae, INVSC1. In addition, circular dichroism and fluorescence spectral analysis revealed no change in the structure of D52S-Lz compared to that of wild-type (Wt-Lz) lysozyme. The mutation (D52S) abolished the catalytic activity of lysozyme. Antimicrobial tests against Staphylococcus aureus and Bacillus subtilis revealed that the catalytically inactive D52S-Lz was as bactericidal as the Wt-Lz lysozyme. Heat treatment leading to enzyme inactivation had no effect on the bactericidal activity of either wild-type or the mutant D52S-Lz lysozyme. The binding affinity of D52S-Lz to the isolated peptidoglycan of S. aureus was unaffected. Our results provide the first demonstration of direct genetic evidence that the antimicrobial activity of lysozyme is operationally independent of its muramidase activity, and strongly suggest the antimicrobial action of lysozyme is due to structural factors.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.