Abstract

Asthma is a multifarious disease that manifests in various phenotypes. Among the various factors that contribute to the development of asthma, the gut microbiota has recently emerged as a compelling area of investigation. This study aims to investigate the causal relationships between gut microbiota and distinct asthma phenotypes. The genome-wide association study (GWAS) summary statistics for 211 gut microbial taxa were used as study exposure. Five traits pertaining to various asthma phenotypes (asthma, allergic asthma, childhood asthma, suggestive for eosinophilic asthma and obesity-related asthma) were included as study outcome. We conducted Mendelian randomization (MR) analysis and sensitivity analysis for each bacterial taxa and asthma phenotypes. We discovered a total of 58 associations that exhibited evidence of causality. Out of these, 4 associations remained significant even after applying multiple correction. An increased risk of asthma was causally associated with higher abundance of genus Holdemanella (OR = 1.11; CI: 1.05-1.17; p = 0.027), genus Oxalobacter (OR = 1.09; CI: 1.04-1.15; p = 0.025) and genus Butyricimonas (OR = 1.14; CI: 1.06-1.22; p = 0.027). Order NB1n was causally linked with an increased risk of obesity-related asthma (OR = 1.17; CI: 1.07-1.29; p = 0.015). There was limited overlap among the taxa that exhibited potential causal relationships with distinct asthma phenotypes. Our research has provided genetic evidence that establishes multiple causal relationships between the gut microbiota and distinct asthma phenotypes, supporting the role of the gut microbiota in various asthma phenotypes. It is possible that different taxa play a role in the development of distinct asthma phenotypes. The causal relationships identified in this study require further investigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call