Abstract
Genealogy and productive information of 48621 dual-purpose buffaloes born in Colombia between years 1996 and 2014 was used. The following traits were assessed using one-trait models: milk yield at 270 days (MY270), age at first calving (AFC), weaning weight (WW), and weights at the following ages: first year (W12), 18 months (W18), and 2 years (W24). Direct additive genetic and residual random effects were included in all the traits. Maternal permanent environmental and maternal additive genetic effects were included for WW and W12. The fixed effects were: contemporary group (for all traits), sex (for WW, W12, W18, and W24), parity (for WW, W12, and MY270). Age was included as covariate for WW, W12, W18 and W24. Principal component analysis (PCA) was conducted using the genetic values of 133 breeding males whose breeding-value reliability was higher than 50% for all the traits in order to define the number of principal components (PC) which would explain most of the variation. The highest heritabilities were for W18 and MY270, and the lowest for AFC; with 0.53, 0.23, and 0.17, respectively. The first three PCs represented 66% of the total variance. Correlation of the first PC with meat production traits was higher than 0.73, and it was -0.38 with AFC. Correlations of the second PC with maternal genetic component traits for WW and W12 were above 0.75. The third PC had 0.84 correlation with MY270. PCA is an alternative approach for analyzing traits in dual-purpose buffaloes and reduces the dimension of the traits.
Highlights
Buffalo herds are managed under dual-purpose production systems in Colombia so farmers are interested in improving traits related with breeding, milk and meat production
A strategy to improve herd productivity is to select animals according to their breeding values (BV), which allow programming mating according to specific objectives
The aim of this study was to explore the relationship between BV for growth, milk yield, and age at first calving in dual-purpose buffaloes by using principal components analysis (PCA)
Summary
Buffalo herds are managed under dual-purpose production systems in Colombia so farmers are interested in improving traits related with breeding, milk and meat production. Principal Components in Buffaloes Dual-Purpose available for various traits it can be difficult to select the animals, especially when the traits have negative genetic correlation. The principal components analysis (PCA) is a multivariate technique that reduces the amount of originally-correlated variables into a smaller set of non-correlated variables, keeping most of the original variability, and reducing the dimensionality to a new set of variables named principal components (PC), under the assumption of losing the least possible amount of information. This technique creates orthogonal axes which are linear combinations of the original variables, based on the matrix eigenvalues of the variables considered. According to Meyer K [2], when the original variables are highly correlated the first PCs can explain most of the variation, allowing to eliminate redundant information
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.