Abstract
The objective of this work was to estimate heritability of each of 5 subjectively measured aspects of temperament of cattle and the genetic correlations of pairs of those traits. From 2003 to 2013, Nellore-Angus F2 and F3 calves (n = 1,816) were evaluated for aspects of temperament at an average 259 d of age, which was approximately 2 mo after weaning. Calves were separated from a group and subjectively scored from 1 (calm, good temperament) to 9 (wild, poor temperament) for aggressiveness (willingness to hit an evaluator), nervousness, flightiness, gregariousness (willingness to separate from the group), and a distinct overall score by 4 evaluators. Data were analyzed using threshold and linear models with additive genetic random effects. Two-trait animal models (nonthreshold) included the additive genetic covariance for pairs of traits and were used to estimate additive genetic correlations. Contemporary groups (n = 104) represented calves penned together for evaluation on given evaluation days. Heifers had greater (worse) means for all traits than steers (P < 0.05). The regression of score on age in days was included in final models for flightiness (P = 0.05; -0.006 ± 0.003) and gregariousness (P = 0.025; -0.007 ± 0.003). Estimates of heritability were large (0.51, 0.4, 0.45, 0.49, and 0.47 for aggressiveness, nervousness, flightiness, gregariousness, and overall temperament, respectively; SE = 0.07 for each). The ability to use this methodology to distinctly separate different aspects of calf temperament appeared to be limited, as estimates of additive genetic correlations were near unity for all pairs of traits; estimates of phenotypic correlation ranged from 0.88 ± 0.01 to 0.99 ± 0.002 for pairs of traits. Distinct subsequent analyses indicated a significant negative relationship of 4 of the various temperament scores with weight at weaning (regression coefficients ranged from -0.008 ± 0.002 for nervousness, flightiness, and gregariousness to -0.003 ± 0.002 for aggressiveness). In subsequent analyses, the regression of temperament trait on sequence of evaluation within a pen was highly significant and solutions ranged from 0.05 ± 0.007 for aggressiveness to 0.08 ± 0.007 for all other traits. The apparent large additive genetic variance for any one of these traits may be useful in identification of genes responsible for differences in cattle temperament.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.