Abstract
Populations that have suffered from genetic erosion are expected to exhibit reduced average trait values or decreased variation in adaptive traits when experiencing periodic or emergent stressors such as infectious disease. Genetic erosion may consequentially modify the ability of a potential host population to cope with infectious disease emergence. We experimentally investigate this relationship between genetic variability and host response to exposure to an infectious agent both in terms of susceptibility to infection and indirect parasite-mediated responses that also impact fitness. We hypothesized that the deleterious consequences of exposure to the pathogen (Batrachochytrium dendrobatidis) would be more severe for tadpoles descended from European treefrog (Hyla arborea) populations lacking genetic variability. Although all exposed tadpoles lacked detectable infection, we detected this relationship for some indirect host responses, predominantly in genetically depleted animals, as well as an interaction between genetic variability and pathogen dose on life span during the postmetamorphic period. Lack of infection and a decreased mass and postmetamorphic life span in low genetic diversity tadpoles lead us to conclude that genetic erosion, while not affecting the ability to mount effective resistance strategies, also erodes the capacity to invest in resistance, increased tadpole growth rate, and metamorphosis relatively simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.