Abstract

Studies employing whole genome and exome sequencing have revealed two remarkable features of prostate cancer (PCa)-the overall low mutation rates, and high rates of genomic rearrangements resulting in recurrent gene fusions. Genomic rearrangements involving the ETS transcription factor family genes are early driver events in PCa. These rearrangements typically involve the fusion of androgen-regulated transcriptionally active genes with the ETS genes (ERG, ETV1, ETV4 and ETV5), resulting in over-expression of fusion genes. The most prevalent ETS gene rearrangement, which is observed in >50% of PCa, involves the fusion of the androgen receptor (AR) target gene, TMPRSS2, with the ERG proto-oncogene, resulting in the formation of the TMPRSS2-ERG gene fusion. In this chapter, we consider the multitude of factors that influence the formation of recurrent genomic rearrangements in PCa. Understanding the mechanistic basis of gene fusion formation will shed light on unique features of PCa etiology and should impact several aspects of clinical disease management, ranging from prevention and early diagnosis to therapeutic targeting.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.