Abstract

Trypanosoma vivax is one of the most common parasites responsible for animal trypanosomosis, and although this disease is widespread in Africa and Latin America, very few studies have been conducted on the parasite's biology. This is in part due to the fact that no reproducible experimental methods had been developed to maintain the different evolutive forms of this trypanosome under laboratory conditions. Appropriate protocols were developed in the 1990s for the axenic maintenance of three major animal Trypanosoma species: T. b. brucei, T. congolense and T. vivax. These pioneer studies rapidly led to the successful genetic manipulation of T. b. brucei and T. congolense. Advances were made in the understanding of these parasites' biology and virulence, and new drug targets were identified. By contrast, challenging in vitro conditions have been developed for T. vivax in the past, and this per se has contributed to defer both its genetic manipulation and subsequent gene function studies. Here we report on the optimization of non-infective T. vivax epimastigote axenic cultures and on the process of parasite in vitro differentiation into metacyclic infective forms. We have also constructed the first T. vivax specific expression vector that drives constitutive expression of the luciferase reporter gene. This vector was then used to establish and optimize epimastigote transfection. We then developed highly reproducible conditions that can be used to obtain and select stably transfected mutants that continue metacyclogenesis and are infectious in immunocompetent rodents.

Highlights

  • Trypanosoma vivax and Trypanosoma congolense are the main parasite species responsible for Animal African Trypanosomosis (AAT) or Nagana

  • The work presented focused on determining axenic conditions for culturing and growing insect forms of T. vivax and prompting their differentiation into metacyclic forms that are infectious for the mammalian host

  • Our work is a significant breakthrough in the field as it should lead, in the future, to the identification of parasite genes that are relevant to its biology and fate, and to work that may shed light on the intricacies of T. vivax–host interactions

Read more

Summary

Introduction

Trypanosoma vivax and Trypanosoma congolense are the main parasite species responsible for Animal African Trypanosomosis (AAT) or Nagana. West African T. vivax populations have been introduced into South American countries - devoid of the tsetse fly - where they are a real threat since they can be efficiently transmitted across vertebrate hosts by other hematophagous insects, including tabanids. In this case the parasites are transmitted mechanically between vertebrate hosts in a noncyclical manner, i.e. with no growth or multiplication in the insects [5,6]. This simpler lifecycle enables T. vivax to adapt to different vectors and hosts and may explain why it has emerged so rapidly in South America

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.