Abstract

Rabies virus is not a single entity but consists of a wide array of variants that are each associated with different host species. These viruses differ greatly in the antigenic makeup of their G proteins, the primary determinant of pathogenicity and major inducer of protective immunity. Due to this diversity, existing rabies vaccines have largely been targeted to individual animal species. In this report, a novel approach to the development of rabies vaccines using genetically modified, reverse-engineered live attenuated rabies viruses is described. This approach entails the engineering of vaccine rabies virus containing G proteins from virulent strains and modification of the G protein to further reduce pathogenicity. Strategies employed included exchange of the arginine at position 333 for glutamine and modification of the cytoplasmic domain. The recombinant viruses obtained were non-neuroinvasive when administered via a peripheral route. The ability to confer protective immunity depended largely upon conservation of the G protein antigenic structure between the vaccine and challenge virus, as well as on the route of immunization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.