Abstract

Vaccination is considered the most effective means to fight against the multidrug-resistant strains of Klebsiella pneumoniae. In recent years, a potential protein glycan coupling technology has been extensively used in the production of bioconjugated vaccines. Here, a series of glycoengineering strains derived from K. pneumoniae ATCC 25955 were designed for protein glycan coupling technology. The capsule polysaccharide biosynthesis gene cluster and the O-antigen ligase gene waaL were deleted via the CRISPR/Cas9 system to further weaken the virulence of host stains and block the unwanted endogenous glycan synthesis. Particularly, the SpyCatcher protein in the efficient protein covalent ligation system (SpyTag/SpyCatcher) was selected as the carrier protein to load the bacterial antigenic polysaccharides (O1 serotype), which could covalently bind to SpyTag-functionalized nanoparticles AP205 to form nanovaccines. Furthermore, two genes (wbbY and wbbZ) located in the O-antigen biosynthesis gene cluster were knocked out to change the O1 serotype of the engineered strain into the O2 serotype. Both KPO1-SC and KPO2-SC glycoproteins were successfully obtained as expected using our glycoengineering strains. Our work provides new insights into the design of nontraditional bacterial chassis for bioconjugate nanovaccines against infectious diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.