Abstract

This paper discusses the use of genetic engineering applications in animal breeding, including a description of the methods, their potential and current uses and ethical issues. Genetic engineering is the name of a group of techniques used to identify, replicate, modify and transfer the genetic material of cells, tissues or complete organisms. Important applications of genetic engineering in animal breeding are: 1) Marker-assisted selection (MAS). The objective of this technology is to increase disease resistance, productivity and product quality in economically important animals by adding information of DNA markers to phenotypes and genealogies for selection decisions. 2) Transgenesis, the direct transfer of specific genes/alleles between individuals, species, or even Kingdoms, in order to change their phenotypic expression in the recipients. Compared to the ‘traditional' improvement techniques based on phenotypic information only, these gene-by-gene techniques allow theoretically a more complete management of animal genomes for animal breeding. In spite of high expectations and new technical developments, its actual efficiency is not always high, as they require a thorough knowledge of functional genomics, and pose additional technical, economical and ethical problems. The possible role for cloning adult animals in breeding is also discussed.

Highlights

  • Genetic engineering is the name of a group of techniques used for direct genetic modification of organisms or population of organisms using recombination of DNA

  • Genetic engineering involves the incorporation of DNA markers for selection, to increase the efficiency of the so called ‘traditional' methods of breeding based on phenotypic information

  • The interest in genetic engineering of mammalian cells is based in the idea of, for example, use gene therapy to cure genetic diseases such as cystic fibrosis by replacing the damaged copies of the gene by normal ones in foetuses or infants

Read more

Summary

Introduction

These techniques may be used to increase disease resistance and productivity in agriculturally important animals by increasing the frequency of the desired alleles in the populations used in food production This can be accomplished by transferring alleles or allele combinations, over expressing or eliminating the expression of particular genes (use of genetic engineering in animal breeding) (Woolliams and Wilmut, 1989; Cameron et al 1994; Kinghorn, 1998; Fries and Ruvinsky, 1999; Smidt and Niemann, 1999; Hill, 2000; Karatzas, 2003; Felmer, 2004). I made emphasis in both the search and use of genomic information for selecting animals and to transfer and use their genes in commercial populations via marker-assisted selection (MAS) or transgenesis

Objectives
Methods
Findings
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call