Abstract

Production of hydrogen peroxide as a by-product of the breakdown of catecholamines by the enzyme monoamine oxidase (MAO) has been hypothesized to contribute to the increased proclivity of dopaminergic neurons for oxidative injury. We established clonal dopaminergic PC12 cell lines which have elevated MAO activity levels resulting from transgenic expression of the B isoform of the enzyme. Both MAO-A and MAO-B have relatively equivalent affinities for dopamine, and since PC12 primarily express the A and not the B form of the enzyme, this allowed us to distinguish the transgenic MAO activity in these cells from endogenous using the MAO-B specific substrate PEA. Elevation of MAO activity levels in the MAO-B+ cells resulted in higher levels of both free radicals and free radical damage compared with controls. In addition, increased MAO-B levels within PC12 cells caused a dose-dependent increase in sensitivity to the toxin MPTP. Our data suggests that oxidation of catecholamines by MAO can contribute to free radical damage in catecholaminergic neurons and that the low MAO-B activity levels found endogenously in these cells likely accounts for their relative resistance to MPTP toxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call