Abstract

Seed of seven cultivars of two-rowed barley (Hordeum Vulgare L.) and F2 seed from a half-diallel set of crosses among the cultivars were malted in two years to obtain data on diastatic power (DP), alpha-amylase activity (αAA), beta- amylase activity (βAA) and malt nitrogen (N) content. Embryo and endosperm genetic effects on the traits were studied by using a genetic model including genotype × environment interaction for malting quality characters. Variation of the four malting quality traits was affected by gentic effects and environmental interaction. Performance of DP and βAA was mainly controlled not only by endosperm dominance effects but also by embryo genotype × environment interaction and endosperm dominance × environment interaction. Variation of αAA and malt N content was controlled by both embryo and endosperm genetic effects, but the embryo dominance and endosperm additive effects contributed a major part to the total genetic effects. Significant interaction variances (embryo additive × environment and dominance × environment and endosperm dominance × environment) were also observed for αAA and malt N content. Diastatic power was related positively to βAA. Malt N content was associated positively with DP, largely because of the relationship between malt N and βAA. No obvious phenotype association between DP and αAA was found. General narrow-sense heritabilities of αAA and malt N content were 26.1% and 27.8%, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call