Abstract

Three steroidal esters with a common alkylating agent (chlorambucil's active metabolite, PHE) and PHE were studied with regard to their genetic activity in human lymphocyte cultures treated in vitro. The cytokinesis block micronucleus assay was used in combination with fluorescence in situ hybridization and the cytosine arabinoside method (ARA-C). The aim of this study was (i) to examine if the modified analogs (EA-72 and SOT-19) of the parent compound (ASE) exerted the same genetic activity with ASE and to correlate the genetic activity with the chemical structure, (ii) to investigate whether these steroidal esters are able to induce excision repairable lesions, through the alkylation of DNA, and (iii) to collect data in order to evaluate the exact role of the steroidal skeleton on the expression of the antileukemic activity. We found that PHE and its steroidal esters are cytotoxic for human lymphocyte cultures, as indicated by the reduction of Cytokinesis Blocked Proliferation Index, PHE being the most cytotoxic molecule. All studied compounds are capable of inducing both chromosome breakage and chromosome delay as indicated by the increased CMN and CMN frequencies. The steroidal derivatives gave reduced genetic activity. The conjugate ketone at the B ring of the steroidal skeleton resulted in decreased genetic activity mainly due to decreased chromosome delay. All studied compounds are capable of inducing DNA excision repair.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.