Abstract

Durum wheat is the 10th most important crop in the world, and its use traces back to the origin of agriculture. Unfortunately, in the last century only part of the genetic diversity available for this species has been captured in modern varieties through breeding. Here, the population structure and genetic diversity shared among elites and landraces collected from 32 countries was investigated. A total of 370 entries were genotyped with Axiom 35K array to identify 8,173 segregating single nucleotide polymorphisms (SNPs). Of these, 500 were selected as highly informative with a PIC value above 0.32 and used to test population structure via DAPC, STRUCTURE, and neighbor joining tree. A total of 10 sub-populations could be identified, six constituted by modern germplasm and four by landraces of different geographical origin. Interestingly, genomic comparison among groups indicated that Middle East and Ethiopia had the lowest level of allelic diversity, while breeding programs and landraces collected outside these regions were the richest in rare alleles. Further, phylogenetic analysis among landraces indicated that Ethiopia might represent a second center of origin of durum wheat, rather than a second domestication site as previously believed. Together, the analyses carried here provide a global picture of the available genetic diversity for this crop and shall guide its targeted use by breeders.

Highlights

  • Durum wheat (Triticum turgidum ssp. durum Desf., 2n = 4x = 28, AABB) is the 10th most important crop worldwide owing to its annual production of 37 million tons (LMC International, 2009; Ranieri, 2015; Taylor and Koo, 2015)

  • The aim of this research was to conduct a molecular assessment of a global durum wheat collection of cultivars, elite breeding lines and landraces, in order to photograph the current state of germplasm exchange and overall available genetic diversity

  • 35,143 single nucleotide polymorphisms (SNPs) were assessed, of these 11,642 (34%) failed to meet the minimum call rate, which suggests that these markers were probably located on the D genome, present in hexaploid bread wheat but not in tetraploid durum wheat

Read more

Summary

Introduction

Durum Desf., 2n = 4x = 28, AABB) is the 10th most important crop worldwide owing to its annual production of 37 million tons (LMC International, 2009; Ranieri, 2015; Taylor and Koo, 2015). It is grown on about 10% of the world’s wheat area mostly in West Asia, North, and East Africa, the North American Great Plains, India, Eastern and Mediterranean Europe (Cantrell, 1987; International Wheat Council, 1991). Tetraploid wheat domestication took place about 12,000 years ago in the Fertile Crescent, when ancient farmers selected among cultivated forms of wild emmer Due to its larger grains and higher productivity, durum gradually replaced its ancestor to become by the second millennium BC the major cultivated form of tetraploid wheat (Maier, 1996; Nesbitt and Samuel, 1998; Zohary et al, 2012)

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.