Abstract

The present study was carried out on 96 animals representing three distinct colour variants of Badri cattle to investigate the genetic diversity, population structure and substitution mutations in the genetic codons due to single nucleotide variations. The DNA samples of 96 Badri cows were genotyped using a double digestion restriction associated DNA (ddRAD) sequencing approach. A standardized bioinformatics pipeline was employed to identify single nucleotide polymorphisms (SNPs), initially detecting 7,168,552 SNPs through alignment with the Bos indicus reference genome assembly. Subsequent stringent quality filtration yielded 65,483 high-confidence SNPs for downstream analysis. Genetic diversity analysis of the Badri cattle population resulted in average values of 0.145, 0.088, and 0.091 for Shannon's diversity Index (I), Simpson's Diversity (h), and Simpson's Unbiased Diversity (uh), respectively. Genetic similarities between the black and brown, black and grey, and brown and grey Badri variantswere found to be 0.9972, 0.9980 and 0.9970, respectively. Tajima's D diversity value was observed to be significant and positive for 99.29% of high-confidence SNPs (65,483). STRUCTURE analysis showed admixture among the three Badri colour variants, suggesting a lack of genetic differentiation. Annotation of high-confidence SNPs regarding genetic codon changes indicated maximum substitutions in the GGC with GGT (22 occurrences), followed by AAC to AGC (20 occurrences), GAA to TAA (19 occurrences) and CAA to CAG (19 occurrences). The study concludes there are genetic similarities among colour variants, lack of rare alleles, balancing selection, sudden population contraction and genetic codon substitutions within the Badri cattle population. Insights derived from SNP data analysis hold potential significance for conservation initiatives and breed improvement programs for indicine cattle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.