Abstract
BackgroundBacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. A total of 37 resistance genes against Xoo has been identified in rice. Of these, ten BLB resistance genes have been mapped on rice chromosomes, while 6 have been cloned, sequenced and characterized. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal.ResultsIn this study 34 pairs of primers were designed from conserved domains of 6 BLB resistance genes; Xa1, xa5, Xa21, Xa21(A1), Xa26 and Xa27. The designed primer pairs were used to generate PCR based polymorphic DNA profiles to detect and elucidate the genetic diversity of the six genes in the 22 diverse rice accessions of known disease phenotype. A total of 140 alleles were identified including 41 rare and 26 null alleles. The average polymorphism information content (PIC) value was 0.56/primer pair. The DNA profiles identified each of the rice landraces unequivocally. The amplified polymorphic DNA bands were used to calculate genetic similarity of the rice landraces in all possible pair combinations. The similarity among the rice accessions ranged from 18% to 89% and the dendrogram produced from the similarity values was divided into 2 major clusters. The conserved domains identified within the sequenced rare alleles include Leucine-Rich Repeat, BED-type zinc finger domain, sugar transferase domain and the domain of the carbohydrate esterase 4 superfamily.ConclusionsThis study revealed high genetic diversity at conserved domains of six BLB resistance genes in a set of 22 rice accessions. The inclusion of more genotypes from remote ecological niches and hotspots holds promise for identification of further genetic diversity at the BLB resistance genes.
Highlights
Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries
The most devastating of them are the ones caused by Magnaporthe grisea, Xanthomonas oryzae pv. oryzae and Rhizoctonia solani
BLB caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries including Korea, Taiwan, Philippines, Indonesia, Thailand, India and China
Summary
Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. Bacterial leaf blight (BLB) caused by the vascular pathogen Xanthomonas oryzae pv. Oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries. Diversity analysis at the resistance gene level of this disease is scanty, and the landraces from West Bengal and North Eastern states of India have received little attention so far. The objective of this study was to assess the genetic diversity at conserved domains of 6 BLB resistance genes in a set of 22 rice accessions including landraces and check genotypes collected from the states of Assam, Nagaland, Mizoram and West Bengal. BLB caused by the vascular pathogen Xanthomonas oryzae pv. Oryzae (Xoo) is one of the most serious diseases leading to crop failure in rice growing countries including Korea, Taiwan, Philippines, Indonesia, Thailand, India and China. Xoo enters rice leaf typically through the hydathodes at the leaf margin, multiplies in the intercellular spaces of the underlying epithelial tissue, and moves to the xylem vessels to cause systemic infection [3,4]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.