Abstract

The objective of this study was to evaluate the genetic diversity of the Colombian Creole donkey in the Department of Sucre using Random Amplified Microsatellites (RAM) molecular markers. In 100 individuals from the five subregions of the department, DNA was extracted and five RAM primers were amplified by PCR. In all, 291 bands were found, on average 11.96±1.45 per primer, the highest value in CCA (18±2.23) and the lowest in TG and GT (8.8±0.44). CA was the most polymorphic primer (88.09±10.91%) with the highest heterozygosity value (He) (0.376±0.021), while the lowest was GT (0.341±0.076 and 0.101±0.040, respectively). Intrapopulation analysis showed an average of 66.50±1.72 bands, of which 89.86±24.04% were polymorphic. The highest number of bands (63±3.84) was found in the Gulf of Morrosquillo (GO) subpopulation, and the lowest in Mojana (MO) (48±2.88); however, the highest value of polymorphic loci (81.16%) and He (0.335±0.022) were found in the Montes de María (MM) subpopulation, making it the most diverse. The average genetic diversity for the entire population was 0.351±0.021 bands. The population structure analysis showed a 10% variation between subpopulations, with an FST value of 0.17±0.01 (P<0.05). Genetic distances between subpopulations showed that MO and GO were the most distant. The RAM markers are effective in assessing the genetic diversity of the Creole donkey, which has high values of genetic diversity, particularly the MM subpopulation. The genetic revealed structure could be the result of natural geographical barriers between the subregions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call