Abstract

To facilitate the wider use of genetic resources including newly collected cultivated and wild azuki bean germplasm, the genetic diversity of the azuki bean complex, based on 13 simple sequence repeat (SSR) primers, was evaluated and a core collection was developed using 616 accessions originating from 8 Asian countries. Wild germplasm from Japan was highly diverse and represented much of the allelic variation found in cultivated germplasm. The SSR results together with recent archaeobotanical evidence support the view that Japan is one center of domestication of azuki bean, at least for the northeast Asian azuki bean. Cultivated azuki beans from China, Korea, and Japan were the most diverse and were genetically distinct from each other, suggesting a long and relatively isolated history of cultivation in each country. Cultivated azuki beans from eastern Nepal and Bhutan were similar to each other and quite distinct from others. For two primers, most eastern Nepalese and Bhutanese cultivated accessions had null alleles. In addition, wild accessions from the Yangtze River region of China and the Himalayan region had a null allele for one or the other of these primers. Whether the distinct diversity of azuki bean in the Himalayan region is due to introgression or separate domestication events requires further study. In contrast, western Nepalese azuki beans showed an SSR profile similar to that of Chinese azuki beans. The genetic distinctness of cultivated azuki beans from Vietnam has been revealed for the first time. The specific alleles indicate that Vietnamese azuki beans have been cultivated in isolation from Chinese azuki beans for a long time. Wild germplasm from the Himalayan region showed the highest level of variation. Based on the results, Himalayan germplasm could be considered a novel gene source for azuki bean breeding. A comparison with mungbean SSR analysis revealed that the mean gene diversity of cultivated azuki bean (0.74) was much higher than that of cultivated mungbean (0.41). The reduction in gene diversity due to domestication, the domestication bottleneck, in azuki bean is not strong compared with that in mungbean.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.