Abstract

In order to understand the relationship between population succession and its genetic behavior, random amplified polymorphic DNA (RAPD) technique was used to analyze the genetic diversity of Quercu glandulifera var. brevipetiolata populations in three forest communities with different succession stages (coniferous forest, coniferous and broad-leaved mixed forest, evergreen broad-leaved forest). The results showed that 145 repetitive loci were produced in 60 individuals of Q. glandulifera using 11 primers, among which 120 loci were polymorphic, and the total percentage of polymorphic loci was 82.76% with an average of 64.14%. Estimated by the Shannon information index, the total genetic diversity of the three populations was 0.4747, with an average of 0.3642, while it was 0.3234, with an average of 0.2484, judged from the Nei index. Judged from percentage of polymorphic loci, Shannon inform at ion index and Nei index, the genetic diversity followed a decreasing order: coniferous forest > broad-leaved mixed forest > evergreen broad-leaved forest. Analysis of molecular variance (AMOVA) showed that 69.73% of the genetic variance existed within populations and 30.27% of the genetic variance existed among populations. The coefficient of gene differentiation (GST) was 0.2319 and the gene flow (N m) was 1.6539. The mean of genetic identity among populations of Q. glandulifera was 0.8501 and the mean of genetic distance was 0.1626. The genetic identity between the Q. glandulifera population in the coniferous forest and that in the coniferous and broadleaved mixed forest was the highest. UPGMA cluster analysis based on Nei’s genetic distance showed that the population in the coniferous forest gathered with that in the coniferous and broad-leaved mixed forest firstly, then with that in the evergreen broad-leaved forest. The genetic structure of Q. glandulifera was not only characteristic of the biological characteristics of this species, but was also influenced by the microenvironment in different communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call