Abstract

BackgroundGenotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations. This study describes the genetic diversity of Plasmodium falciparum isolates from uncomplicated malaria cases over a ten year period (2003–2013) in Ghana using the polymorphic antigenic marker, merozoite surface protein 2 (msp2).MethodsArchived filter paper blood blots from children aged nine years and below with uncomplicated malaria collected from nine sites in Ghana were typed for the presence of the markers. A total of 880 samples were genotyped for msp2 for the two major allelic families, FC27 and 3D7, using nested polymerase chain reaction (PCR). The allele frequencies and the multiplicity of infection were determined for the nine sites for five time points over a period of ten years, 2003–2004, 2005–2006, 2007–2008, 2010 and 2012–2013 malaria transmission seasons.ResultsThe number of different alleles detected for the msp2 gene by resolving PCR products on agarose gels was 14. Both of the major allelic families, 3D7 and FC27 were common in all population samples. The highest multiplicity of infection (MOI) was observed in isolates from Begoro (forest zone, rural site): 3.31 for the time point 2007–2008. A significant variation was observed among the sites in the MOIs detected per infection (Fisher's exact test, P < 0.001) for the 2007 isolates and also at each of the three sites with data for three different years, Hohoe, P = 0.03; Navrongo, P < 0.001; Cape Coast, P < 0.001. Overall, there was no significant difference between the MOIs of the three ecological zones over the years (P = 0.37) and between the time points when data from all sites were pooled (P = 0.40).ConclusionsThe diversity and variation between isolates detected using the msp2 gene in Ghanaian isolates were observed to be profound; however, there was homogeneity throughout the three ecological zones studied. This is indicative of gene flow between the parasite populations across the country probably due to human population movements (HPM).Electronic supplementary materialThe online version of this article (doi:10.1186/s13071-016-1692-1) contains supplementary material, which is available to authorized users.

Highlights

  • Genotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations

  • The merozoite surface proteins 2 is a polymorphic antigenic marker that has been used extensively to describe the diversity of parasite populations in many malaria endemic countries

  • Study sites The archived samples used for this study were collected in 2003–2013 from nine out of the ten sentinel sites set up by the Noguchi Memorial Institute for Medical Research (NMIMR) and the National Malaria Control Programme (NMCP) for monitoring antimalarial drug resistance in the country

Read more

Summary

Introduction

Genotyping malaria parasites to assess their diversity in different geographic settings have become necessary for the selection of antigenic epitopes for vaccine development and for antimalarial drug efficacy or resistance investigations. Msp gene has two major allelic families, FC27 and ICI/3D7 based on the variable non-repeat sequences as well as the varying sizes of the tandem repeats in the central region [6, 7]. This parasite surface antigen plays a role in parasite invasion of the erythrocytes and due to the high polymorphism they exhibit, the parasite gains the ability to evade immune responses [8, 9]. Of the three marker genes, msp, msp and glutamine-rich protein (glurp), which have been endorsed by the WHO for use in distinguishing between recrudescence and new infection in recurrent infections during antimalarial drug efficacy investigations, the msp marker is the most polymorphic and the highest discriminatory and informative marker [9,10,11,12,13]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call