Abstract

Orobanche crenata is a parasitic weed that causes considerable yield losses on food legumes in Ethiopia and the Mediterranean region. Understanding the genetic diversity of Orobanche crenata using molecular techniques generate useful information in managing the weed through resistance breeding. This study aimed at assessing the genetic diversity of O. crenata populations collected from major faba bean growing areas of Ethiopia. A total of 96 samples were collected from the Orobanche-infested faba bean farmer field. The genetic diversity of the population was studied using 30 O. cumana SSR markers. The results showed that 11 SSRs were functional and transferable markers to study the diversity of O. crenata populations. The average number of alleles, gene diversity, heterozygosity, and polymorphic information content values for the SSR loci were 9.6, 0.82, 0.38, and 0.80, respectively. The pairwise genetic similarity analysis showed the lowest genetic distance between samples collected from South Gondar and South Wollo (0.12) while the highest genetic distance (0.48) was found between South Gondar and North Wollo. The analysis of molecular variance result indicated that the variation among individuals was a major source of genetic variation (55%) followed by within individuals (43%) and among populations (2%) variation. The output of population genetic structure analysis indicated the presence of two major groups irrespective of the area of collection or region of origin. Besides, the outcome of the spatial autocorrelation computation indicated a significant and positive genetic correlation between samples collected under a 28 km radius. In general, the absence of geographic region based genetic structure presumably demonstrates the expansion of the parasitic weed between farming sites upon its recent introduction to the country. Thus, the clear absence of population differentiation warrants screening faba bean population in hot spot area.

Highlights

  • The parasitic weed (Orobanche spp.) imposes considerable yield losses on faba bean (Vicia faba), lentil (Lens culinaris), carrot (Daucus carota), pea (Pisum sativum), chickpea (Cicer arietinum), and vetches (Vicia spp.) [1]

  • One of the advantages of SSR markers is their higher level of polymorphism and reproducibility than RAPD and ISSR markers used to study the diversity of O. crenata in previous studies [12, 23,24,25]

  • This study revealed high within population genetic diversity; among the four geographic populations, South Wollo accumulated more genetic diversity as compared to others

Read more

Summary

Introduction

The parasitic weed (Orobanche spp.) imposes considerable yield losses on faba bean (Vicia faba), lentil (Lens culinaris), carrot (Daucus carota), pea (Pisum sativum), chickpea (Cicer arietinum), and vetches (Vicia spp.) [1]. Broomrapes (Orobanche spp.) are native to the Mediterranean region (North Africa, the Middle East, and southern Europe) and western Asia [2]. Orobanche crenata is an obligate root parasite, which is widely distributed in the Mediterranean region, the Middle East, and Eastern Europe [3]. The productivity of faba bean is below 2 t ha-1, which is caused due to low yielding landraces, parasitic weeds (Orobanche crenata Forsk), and diseases [6,7,8]. Orobanche crenata was first reported in 1993 in one village on 10 ha of faba bean crop in the north

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call