Abstract

Introduction:The Sultanate of Oman is rich in diversity of the most important crops like wheat, which not only has a global significance but is also regarded as one of the strategic crops in the country. The country has an ancient cultivation history of both bread wheat (Triticum aestivumL.s.l.) and durum wheat (Triticum turgidumsub sp.durum) because of its characteristic location on the eastern edge of the Arabian Peninsula. Wheat landraces constitute the prime genetic resources of cultivated wheat not only in Oman but also in several MENA (the Middle East and North Africa) countries. Indigenous landraces have paramount significance for their potential utilization in crop improvement and conservation programs. Hence, the present study was undertaken to subject 17 indigenous durum wheat accessions for analyses of diversity to select parents for hybridization in national crop improvement programs.Materials and Methods:The trial was conducted consecutively for two cropping seasons (2017-2018 and 2018-2019) during winter from November to March on the layouts of a loamy soil site under sprinkler irrigation system in Augmented Design with five check varieties replicated five times randomized and distributed throughout the experimental area under spacing and crop husbandry practices as per national recommendations. The data on 9 quantitative (Plant descriptors) and 6 qualitative traits on the presence (score 1) or absence (score 0) of pigmentation on 6 plant parts were collected. These traits were subjected to both Principal Component Analysis (PCA) and Hierarchical Cluster Analysis (HCA) to comprehend the contribution of these characters towards diversity and form prime diverse clusters from 17 indigenous durum wheat landraces to select appropriate parents for crossing.Results:The results indicated that indigenous durum wheat accessions were significantly different (p>0.05) with respect to all the quantitative characters except the number of tillers. Of 36 combinations of associations among 9 agro-morphological characters’ studied, only six correlations involving four charactersviz. tiller no., spikelets/ spike, grains/spike, and grain length were found significant (p<0.05). The results of two multivariate analyses indicated the formation of four diverse clusters with different compositions of accessions, thus not supporting each other in discerning diversity. The parents were selected for hybridization for improving characters of growth for higher yield or productivity with one or two identifying markers of pigmentation on plant parts.Conclusion:The indigenous durum wheat landraces / accessions were found to be more diverse and potential for use in the national crop improvement programs for higher productivity.

Highlights

  • The Sultanate of Oman is rich in diversity of the most important crops like wheat, which has a global significance but is regarded as one of the strategic crops in the country

  • Of the world wheat cultivated area, Triticum aestivum occupies 90%, whereas of the remaining two species, Triticum durum contributes 9-10% and Triticum dicoccum contributes to a negligible extent [2, 3]

  • Seventeen indigenous durum wheat (Triticum turgidum ssp. durum) landraces of the USDA accessions, repatriated by the Oman Animal & Plant Genetic Resources Center (OAPGRC) of the Research Council from USDA gene bank, where these accessions were deposited by international FAO collectors during their joint Ministry of Agriculture & Fisheries (MAF)-FAO collecting missions during the 1990s from different governorates of Oman, were studied (Table 1)

Read more

Summary

Introduction

The Sultanate of Oman is rich in diversity of the most important crops like wheat, which has a global significance but is regarded as one of the strategic crops in the country. Countries in the Mediterranean and Southern Europe, the Balkans, North Africa, and southwest Asia, where initial wheat domestication and cultivation are observed, the durum wheat cultivars are still predominant [7 - 11]. These indigenous durum wheat cultivars form an important source of genetic materials due to their ease in adapting to adverse biotic and abiotic stresses and grain quality. These could be the products of natural selection through domestication performed by the farmers through ages [4]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call