Abstract

Malaria infections in school-age children further make it difficult to control the disease's spread. Moreover, the genetic diversity of glutamate-rich protein, potentially a candidate for vaccine development, has not yet been investigated in the Democratic Republic of Congo. Therefore, we aimed to assess the genetic diversity of the immunodominant C-terminal repetitive region (R2) of Plasmodium falciparum glutamate-rich protein gene (pfglurp) among school-age children living in Kinshasa, DRC. We conducted nested PCR targeting R2 of pfglurp and the amplicon were directly sequenced. We summarized the prevalence of mutations of bases and amino acids and indicated the amino acid repeat sequence in the R2 region by the unit code. We then statistically analyzed whether there was a relationship between the number of mutations in the pfglurp gene and attributes. In 221 samples, haplotype 1 was the most common (n = 137, 61.99%), with the same sequence as the 3D7 strain. Regarding the number of base mutations, it was higher in urban areas than rural areas (p = 0.0363). When genetic neutrality was tested using data from 171 samples of the single strain, Tajima's D was −1.857 (p = 0.0059). In addition, FST as the genetic distance between all attributes was very small and no significant difference was observed. This study clarified the genetic mutation status and relevant patient attributes among School-age children in the DRC. We found that urban areas are more likely to harbour pfglurp mutations. Future research needs to clarify the reason and mechanism involved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call