Abstract

The random amplified polymorphic DNA (RAPD) technique was used to evaluate the genetic diversity and population structure of 91 genets from four wild populations of Betula luminifera at different elevations in the National Nature Reserve of theWuyi Mountain, Fujian Province, China. Eighteen random primers (from 139 primers) produced a total of 199 scorable amplified fragments, of which 174 (87.44%) were polymorphic across all individuals. The genetic diversities of B. luminifera at the population level and species level were PPL = 60.05%, h = 0.2242, I = 0.3181 and PPL = 87.44%, h = 0.3442, I = 0.4899, respectively. The value of differentiation (G st= 0.3486) and analysis of molecular variance (AMOVA) indicated that there was a relatively high genetic differentiation among populations, and about one-third of the genetic variation occurred among populations. Pearson correlation analysis further revealed that the genetic diversity within populations had significant or very significant correlation with the elevation, climatic factors (annual average temperature and annual precipitation) and soil nutrient factors (total nitrogen, C/N ratio and organic matter). Mantel tests show that there was a significant correlation between the genetic distances among populations and the distance of elevation, and the divergence of soil nutrient factors. The results of the present study suggested that the relatively high genetic differentiation among populations of B. luminifera at different elevations might be caused by ecological factors and gene flow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call