Abstract

Dried red chili (Capsicum spp.), a widely produced and consumed spice in Nigeria, is often contaminated by aflatoxins. Aflatoxins are potent mycotoxins of severe health and economic concern worldwide. Aspergillus flavus often contaminates crops with aflatoxins in warm regions; however, not all isolates are aflatoxin producers. Nonaflatoxigenic isolates have potential as biocontrol agents for aflatoxin mitigation. The current study examined the genetic diversity of A. flavus (n = 325) associated with chilies in Nigeria and identified 123 nonaflatoxigenic isolates. The Nigerian A. flavus isolates from chili were diverse at 17 microsatellite loci, with 5 to 36 alleles per locus, and included 152 haplotypes. The isolates that are active ingredients in Aflasafe, registered for aflatoxin biocontrol on maize and groundnuts in Nigeria, did not share haplotypes with the chili isolates. Of the 152 haplotypes, 65% produced aflatoxins in autoclaved maize, some of which (17%) produced >100,000 µg/kg of aflatoxins. Aflatoxins were not detected in 35% of the haplotypes. Cluster amplification pattern assay detected large deletions in the aflatoxin biosynthetic clusters of some (32%) of the nonaflatoxigenic haplotypes. Coinfection of chili with nonaflatoxigenic isolates from chilies (n = 7) and A. aflatoxiformans resulted in a significantly greater average reduction in total aflatoxins compared with that achieved by Aflasafe active ingredient isolates (P < 0.01). These nonaflatoxigenic isolates are a genetic resource for the development of biological control products for aflatoxin mitigation in chilies in Nigeria and should be evaluated under field conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.