Abstract

Simple SummaryActinobacillus pleuropneumoniae causes severe pneumonia in pigs, resulting in high economic losses. A total of 114 isolates from pneumonia were characterized by the examination of biotype, serovar, antibiotic resistance genes, and genes of toxin production. Analyzing their genetic relationship, 16 groups of related isolates were found. The genetic diversity was different in the different groups, however. It was remarkably small in the case of serovar 13, which was unusually frequent in Hungary. Therefore, representative isolates of serovar 13 were subjected to whole-genome sequencing, confirming low diversity. Antibiotic resistance was frequently found in isolates of serovar 13 but was less frequent in other serovars. The unusually high frequency and low diversity of serovar 13 suggest a clonal spread in Hungary, which may have been facilitated by a high frequency of resistance to beta-lactams and tetracyclines.A total of 114 Actinobacillus pleuropneumoniae isolates from porcine hemorrhagic necrotic pleuropneumonia were characterized by the examination of biotype, serovar, antibiotic resistance genes, and genes of toxin production. Pulsed-field gel electrophoresis was used to analyze their genetic relationship, which identified 16 clusters. Serovar 2 (50 isolates), serovar 13 (25 isolates), serovar 9 (11 isolates), and serovar 16 (7 isolates) were the most frequent serovars. Serovar 2 formed nine distinguishable clusters; serovar 13 and serovar 16 were less diverse, exhibiting two potentially related subclusters; serovar 9 was represented by a single cluster. Remarkably small differences were seen in the core genome when nine representative isolates of serovar 13 were subjected to whole-genome sequencing. Tetracycline resistance was relatively frequent in the two clusters of serovar 13; one of them was also frequently resistant against beta-lactams. Resistance in other serovars was sporadic. All isolates carried the apxIV gene. The toxin profiles of serovar 2 were characterized by the production of ApxII and ApxIII toxins, except for a small cluster of three isolates: serovar 9 and serovar 16 isolates produced ApxI and ApxII toxins. Serovar 13 carried apxII and apxIBD genes, indicating the production of the ApxII toxin, but not of ApxI or ApxIII. The unusually high frequency and low diversity of serovar 13 are not explained by its virulence properties, but the high frequency of resistance to beta-lactams and tetracyclines may have played a role in its spread. The emergence of serovar 16 may be facilitated by its high virulence, also explaining its high clonality.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call