Abstract

Bartonella spp. are globally distributed bacteria that cause endocarditis in humans and domestic animals. Recent work has suggested bats as zoonotic reservoirs of some human Bartonella infections; however, the ecological and spatiotemporal patterns of infection in bats remain largely unknown. Here we studied the genetic diversity, prevalence of infection across seasons and years, individual risk factors, and possible transmission routes of Bartonella in populations of common vampire bats (Desmodus rotundus) in Peru and Belize, for which high infection prevalence has previously been reported. Phylogenetic analysis of the gltA gene for a subset of PCR-positive blood samples revealed sequences that were related to Bartonella described from vampire bats from Mexico, other Neotropical bat species, and streblid bat flies. Sequences associated with vampire bats clustered significantly by country but commonly spanned Central and South America, implying limited spatial structure. Stable and nonzero Bartonella prevalence between years supported endemic transmission in all sites. The odds of Bartonella infection for individual bats was unrelated to the intensity of bat flies ectoparasitism, but nearly all infected bats were infested, which precluded conclusive assessment of support for vector-borne transmission. While metagenomic sequencing found no strong evidence of Bartonella DNA in pooled bat saliva and fecal samples, we detected PCR positivity in individual saliva and feces, suggesting the potential for bacterial transmission through both direct contact (i.e., biting) and environmental (i.e., fecal) exposures. Further investigating the relative contributions of direct contact, environmental, and vector-borne transmission for bat Bartonella is an important next step to predict infection dynamics within bats and the risks of human and livestock exposures.

Highlights

  • Bats (Order: Chiroptera) serve as reservoir hosts for viruses of concern for human and animal health [1,2] including SARS coronavirus, rabies virus, filoviruses, and henipaviruses [3,4,5,6]

  • Bats have been implicated as a likely reservoir host for these bacteria, but little is known about how prevalence varies over time, routes of transmission, and the genetic diversity of Bartonella in bats

  • We present results from a two-year, spatially replicated study of common vampire bats, which have previously shown high infection prevalence of Bartonella and could pose risks of cross-species transmission due to their diet of mammal blood

Read more

Summary

Introduction

Bats (Order: Chiroptera) serve as reservoir hosts for viruses of concern for human and animal health [1,2] including SARS coronavirus, rabies virus, filoviruses, and henipaviruses [3,4,5,6]. Phylogenetic analyses show bats are reservoirs of zoonotic Candidatus B. mayotimonensis [18,19,20], a causative agent of human endocarditis [21]. While some bat ticks can feed on humans [30], the high host specificity of bat flies [31,32] could limit opportunities for crossspecies transmission through ectoparasites [31,32,33]. Phylogenetic patterns of weak Bartonella host specificity in Neotropical bat communities could reflect transmission through close contacts between species in multi-species roosts, but could stem from transmission through generalist vectors [15,24,37]. Bartonella might be transmitted through exposure to feces between bats and to humans that enter roosts or to domestic animals exposed to bat feces [18,38]

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.