Abstract

Bacillus cereus can cause emetic and diarrheal types of food poisoning, but little study has been done on the toxins and toxin-encoding genes of B. cereus strains isolated from Sunsik, a Korean ready-to-eat food prepared from grains, fruits, and vegetables. In this study, 39 unique B. cereus strains were isolated and identified from Sunsik samples, with an average contamination level of 10 to 200 CFU/g. The detection rates of the hblACD, cytK, and bceT genes among all the strains were 48.7, 66.7, and 87.1%, respectively. All 39 B. cereus strains carried nheABC and entFM genes, and 36 strains also had the ces gene, which encodes an emetic toxin. Nonhemolytic enterotoxin and hemolysin BL enterotoxin were produced by 39 and 26 strains, respectively. The strains were separated into 13 profiles based on the presence or absence of toxins and their genes, as determined by antibody tests and PCR analysis. Profile 1 was the largest group, comprising 30.7% (12 of 39) of the B. cereus strains tested; these strains harbored all toxins and their genes. The B. cereus strains were susceptible to most of the antibiotics tested but were highly resistant to b -lactam antibiotics. The repetitive element sequence polymorphism PCR fingerprints of the B. cereus strains were not influenced by the presence of toxin genes or antibiotic resistance profiles. Our results suggest that B. cereus strains from Sunsik could cause either the diarrheal or emetic types of food poisoning because all strains isolated contained at least one toxin and its gene, although the level of B. cereus contamination in Sunsik was low.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call