Abstract

Radix notoginseng, the root of Panax notoginseng (Burk.) F. H. Chen, has been widely used in traditional Chinese medicine. Its main components, saponins, have been reported to have many pharmacological activities. To test the general assumption that herbs of a single species planted and harvested from a single location are uniform in chemical and genetic makeup, chemical analysis and DNA fingerprinting were carried out. High-performance TLC together with HPLC analysis were used to analyze 17 randomly sampled 3-year-old roots from a single farm for the presence of six saponins. Five roots showed distinct chemical profiles with changed ratios of ginsenosides Rd/Rg1, Re/Rg1, or Rb1/Rg1. The same samples, together with some 1- and 2-year-old samples, were also subjected to fluorescent amplified fragment length polymorphism (AFLP) analysis, and their internal transcribed spacer 2 (ITS 2) regions were sequenced. Fluorescent AFLP analysis was found to be much more polymorphic than the ITS 2 sequence and showed clear evidence of genetic diversity within the tested population. In conclusion, genetic diversity and variation of saponin contents between individual P. notoginseng roots have been detected. We suggest that genetic diversity affects the contents of the six saponins. The saponin contents variation and genetic diversity were also found among P. notoginseng root samples collected from China and Singapore markets. Since variable saponin contents may affect therapeutic efficacy, combining the use of genetic profiling with chemical profiling will help ensure greater uniformity in the quality of P. notoginseng roots. The genetic and chemical diversity within a population also provides the opportunity for breeding new cultivars with more desirable chemical constituents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call