Abstract

BackgroundPrevious studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes.Methodology/Principal FindingsTo test this hypothesis, we investigated the symbiont genetic structure using the allelic size variation at four specific microsatellite loci. Classical analysis of molecular variance (AMOVA) and differentiation statistics revealed that most of the genetic diversity was observed among individuals within populations and frequent haplotypes were shared between populations. The structure of genetic diversity varied at different geographical scales, with almost no differentiation within the Campo HAT focus and a low but significant differentiation between the Campo and Bipindi HAT foci.Conclusions/SignificanceThe data provided new information on the genetic diversity of the secondary symbiont population revealing mild structuring. Possible interactions between S. glossinidius subpopulations and Glossina species that could favor tsetse fly infections by a given trypanosome species should be further investigated.

Highlights

  • Tsetse flies are medically and agriculturally important vectors that transmit African trypanosomes, the causative agents of sleeping sickness in humans and Nagana in animals

  • Human African trypanosomiasis remains a threat to the poorest people in Africa

  • Previous analyses showed the association between the presence of Glossina symbiont, Sodalis glossinidius, and the fly infection by trypanosomes in a south-western region in Cameroon: flies harbouring symbionts had a threefold higher probability of being infected by trypanosomes than flies devoid of symbionts

Read more

Summary

Introduction

Tsetse flies are medically and agriculturally important vectors that transmit African trypanosomes, the causative agents of sleeping sickness in humans (human African trypanosomiasis – HAT) and Nagana in animals. This debilitating disease still affects a wide range of people in sub-Saharan Africa [1] and is invariably fatal if untreated. The drugs currently used are unsatisfactory: some are toxic and all are difficult to administer in humans [3]. Previous studies have shown substantial differences in Sodalis glossinidius and trypanosome infection rates between Glossina palpalis palpalis populations from two Cameroonian foci of human African trypanosomiasis (HAT), Bipindi and Campo. We hypothesized that the geographical isolation of the two foci may have induced independent evolution in the two areas, resulting in the diversification of symbiont genotypes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call