Abstract
High genetic diversity is thought to characterize successful invasive species, as the potential to adapt to new environments is enhanced and inbreeding is reduced. The red swamp crayfish, Procambarus clarkii, native to northeastern Mexico and south-central USA was introduced to Nanjing, China from Japan in 1929. Little is known about the genetic diversity and population structure of this species in China. We examined the genetic diversity and population structure of six P.clarkii populations using nine polymorphic microsatellites. Among the six populations, Nanjing population showed the highest allele number, allele richness and gene diversity, which is consistent with records indicating Nanjing may be the first site of introduction. In all six populations, significant heterozygote deficit was observed, suggesting founder effects and non-random mating. Analysis of bottleneck under infinite allele model, stepwise mutation model and two-phased model of mutation revealed evidence of a recent bottleneck in all these populations. Pairwise genetic distance analysis, AMOVA and assignment tests demonstrated high genetic differentiation between populations. Pairwise genetic distance did not fit the pairwise geographic distance, suggesting that human mediated dispersal have played a role in the population expansion and genetic differentiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.