Abstract

Miscanthus lutarioriparius is a native perennial Miscanthus species of China, which is currently used as raw material of papermaking and bioenergy crop. It also has been considered as a promising eco-bioindustrial plant, which can offer raw material and gene for the biomass industry. However, lack of germplasm resources and genetic diversity information of M. lutarioriparius have become the bottleneck that prevents the stable and further development of the biomass industry. In the present study, genetic diversity of 153 M. lutarioriparius individuals nine populations was studied using 27 Start Codon Targeted (SCoT) markers. High polymorphic bands (97.67%), polymorphic information content (0.26) and allele number (1.88) showed SCoT as a reliable marker system for genetic analysis in M. lutarioriparius. At the species, the percentage of polymorphic loci [PPL] was 97.2%, Nei’s gene diversity [H] was 0.36, Shannon index [I] was 0.54 and Expected Heterozygosity [He] was 0.56. Genetic variation within populations (84.91%) was higher than among populations (15.09%) based on analysis of molecular variance (AMOVA). Moderate level of genetic differentiation was found in M. lutarioriparius populations (Fst = 0.15), which is further confirmed by STRUCTURE, principal coordinates analysis (PCoA) and an unweighted pair group method with arithmetic mean (UPGMA) analysis that could reveal a clear separation between groups of the north and south of Yangtze River. The gene flow of the populations within the respective south and north of Yangtze River area was higher, but lower between the areas. There was no obvious correlation between genetic distance and geographic distance. The breeding systems, geographical isolation and fragmented habitat of M. lutarioriparius may be due to the high level of genetic diversity, moderate genetic differentiation, and the population, structure. The study further suggests some measure for conservation of genetic resources and provides the genetic basis for improving the efficiency of breeding based on the results of diversity analysis.

Highlights

  • Miscanthus spp. is a perennial herbaceous grass belonging to the Poaceae [1] with origins in East and Southeast Asia

  • Thirty-six Start Codon Targeted (SCoT) primers were tested with three M. lutarioriparius accessions as DNA templates; all primers produced amplification products, and only primers showing clear and reproducible band patterns were selected for further analysis

  • The number of different alleles was 1.97 at the species (Table 2). These results indicated that a high level of polymorphism could be detected among M. lutarioriparius accessions using SCoT markers

Read more

Summary

Introduction

Miscanthus spp. is a perennial herbaceous grass belonging to the Poaceae [1] with origins in East and Southeast Asia. Miscanthus has a strong ability to adapt to different habitats owing to rich morphological and genetic diversity [2,3,4,5]. It is considered one of the most promising second-generation energy crops with high C4 photosynthetic efficiency [6] high and stable yield potential [7,8], fast growth, low-nutrient requirement [9], high water-use efficiency [10,11], high disease resistance [12], and high cellulose content [13]. Identification of Miscanthus varieties with high biomass yield and good energy-related quality is desirable

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call