Abstract

BackgroundBlack cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood.ResultsIn the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance ‘Was’ had a relatively low genetic diversity, while ‘Que’, ‘Lou’, and ‘Ten’ provenances had high genetic diversity, with Shannon’s information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance ‘Iow’ had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance.ConclusionsP. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.

Highlights

  • Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding

  • Polymorphic simple sequence repeat (SSR) primers In this study, 20 polymorphic SSR primer pairs were preliminary selected from 145 poplar SSR primer pairs for further analysis (Additional file 1: Table S1)

  • Using two methods to detect the null alleles of the loci (Additional file 1: Table S2) [30, 31], we found that the null alleles of five loci (SSR15, SSR42, SSR54, SSR65, and SSR76) could affect the analysis results; the data of these five loci were excluded from the subsequent analysis

Read more

Summary

Introduction

Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. The genetic diversity and population structure of the introduced resources are not fully understood. To fully understand the genetic information of germplasm resources, screening representative individuals and constructing a core germplasm bank for protection and utilization can shorten the breeding process and accelerate genetic improvement [8]. Researchers regard the study of forest genetic diversity and population structure as important basic research, and such studies have been carried out on a variety of species. Among forest trees, the genome of Populus trichocarpa was the first to be sequenced [9]; there have been relatively more studies on its genetic information, including its genetic diversity and population structure [10, 11]. Similar studies have been carried out on other tree species, such as P. nigra L. [12,13,14], P. simonii [15], P. tremuloides [16], P. balsamifera [17], P. cathayana Rehd [18], P. euphratica [19], P. tomentosa [20] and P. szechuanica var. tibetica [21]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call