Abstract

Wild soybean (Glycine soja Sieb. et Zucc) is the most important germplasm resource for soybean breeding, and is currently subject to habitat loss, fragmentation and population decline. In order to develop successful conservation strategies, a total of 604 wild soybean accessions from 43 locations sampled across its range in China, Japan and Korea were analyzed using 20 nuclear (nSSRs) and five chloroplast microsatellite markers (cpSSRs) to reveal its genetic diversity and population structure. Relatively high nSSR diversity was found in wild soybean compared with other self-pollinated species, and the region of middle and lower reaches of Yangtze River (MDRY) was revealed to have the highest genetic diversity. However, cpSSRs suggested that Korea is a center of diversity. High genetic differentiation and low gene flow among populations were detected, which is consistent with the predominant self-pollination of wild soybean. Two main clusters were revealed by MCMC structure reconstruction and phylogenetic dendrogram, one formed by a group of populations from northwestern China (NWC) and north China (NC), and the other including northeastern China (NEC), Japan, Korea, MDRY, south China (SC) and southwestern China (SWC). Contrib analyses showed that southwestern China makes the greatest contribution to the total diversity and allelic richness, and is worthy of being given conservation priority.

Highlights

  • Soybean [Glycine max (L.) Merrill, Fabaceae], is the world’s most important grain legume crop for its protein and oil [1,2], and its genetic diversity has been declining during processes of domestication and artificial selection [2]

  • MICROCHECKER found no evidence of scoring errors, but some samples were detected to have null alleles

  • Mutations in the flanking region may prevent the primer from annealing to template DNA during amplification of microsatellite loci by PCR [28], but we still kept these loci for further analyses because the frequency was relatively small (

Read more

Summary

Introduction

Soybean [Glycine max (L.) Merrill, Fabaceae], is the world’s most important grain legume crop for its protein and oil [1,2], and its genetic diversity has been declining during processes of domestication and artificial selection [2]. Wild soybean resources have been severely depleted in China in the last 20 years due to habitat fragmentation [6]. Comparing with surveys in 1979 to 1983, the survey conducted by the Chinese Ministry of Agriculture in 2002 to 2004 revealed large range reductions of wild soybean [7]. The most important populations of wild soybean in Jixian county of Heilongjiang province in China have disappeared following land conversion for agriculture; a large population of 0.02 km in the Keshan county of the same province has been almost completely destroyed, and the large population in the Zhangwu county of the Liaoning province in China has disappeared, leading to the permanent loss of the white-flowered soybean type [7]. Wild soybean has been listed as a national second-class protected plant in 1999 in China [8] and the species requires urgent conservation actions

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call