Abstract

The genetic diversity and phylogenetic relationships in the genus Secale L. (rye) was evaluated using 24 Secale cereale microsatellite (SCM) markers. The average polymorphism information content (PIC) value of each microsatellite locus in 30 Secale accessions evaluated was higher than that in 47 cultivated ryes (Secale cereale ssp. cereale). The mean genetic similarity (GS) index in Secale was lower than that in cultivated rye. The highest within-species GS index was observed for S. sylvestre and the lowest for S. strictum, whereas the highest between-species GS index was found between S. cereale and S. vavilovii and the lowest between S. sylvestre and S. cereale. There was no obvious difference in GS levels in the cultivated rye accessions from Asia, Europe, North America or South America. Cluster analysis indicated that all the Secale accessions could be distinguished by the 24 microsatellite loci. We also found that the S. sylvestre accessions were obviously divergent from the accessions of other species and that the S. vavilovii accessions were closely related to the S. cereale accessions. Our results also showed that S. strictum was heterogeneous and showed great within-species differences. The microsatellite-derived dendrogram faithfully reflected the phylogenetic relationships between Secale species but did not indicate a possible domestication process of the cultivated rye based on the geographical sources of the accessions.

Highlights

  • The taxonomy of the genus Secale has for a long time been a matter of disagreement, despite the large number of studies performed

  • The average polymorphism information content (PIC) value of the 24 microsatellite loci was 0.604 and ranged from 0.315 to 0.799. In these accessions the highest PIC value was for the SCM101 marker

  • These results indicated a high level of the microsatellite polymorphism in the 30 accessions

Read more

Summary

Introduction

The taxonomy of the genus Secale (rye) has for a long time been a matter of disagreement, despite the large number of studies performed. Ars-grin.gov), the genus Secale is presently recognized as containing four species, consisting of the annual outbreeder S. cereale L. Simple sequence repeats (SSRs or microsatellites) consisting of tandem repeats of 2 to 6 nucleotides are abundantly distributed throughout the nuclear genomes of all studied plant species (Tautz et al 1986, 1989, Litt and Luty 1989). Because of their co-dominant inheritance, high polymorphism, good reproducibility and the convenience of the polymerase chain reaction (PCR) microsatellites have become the genetic markers of choice for studies involving plant species (Powell et al 1996, Zhebentyayeva et al 2003). At least 184 S. cereale microsatellite (SCM) markers have recently been developed (Saal and Wricke 1999, Hackauf and Wehling 2002)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call