Abstract

Leishmania infantum causes human and canine leishmaniosis. The parasite, transmitted by phlebotomine sand flies, infects species other than dogs and people, including wildlife, although their role as reservoirs of infection remains unknown for most species. Molecular typing of parasites to investigate genetic variability and evolutionary proximity can help understand transmission cycles and designing control strategies. We investigated Leishmania DNA variability in kinetoplast (kDNA) and internal transcribed spacer 2 (ITS2) sequences in asymptomatically infected wildlife (n=58) and symptomatically and asymptomatically infected humans (n=38) and dogs (n=15) from south-east Spain, using single nucleotide polymorphisms (SNPs) and in silico restriction fragment length polymorphism (RFLP) analyses. All ITS2 sequences (n=76) displayed a 99%-100% nucleotide identity with a L.infantum reference sequence, except one with a 98% identity to a reference Leishmania panamensis sequence, from an Ecuadorian patient. No heterogeneity was recorded in the 73 L.infantum ITS2 sequences except for one SNP in a human parasite sequence. In contrast, kDNA analysis of 44 L.infantum sequences revealed 11 SNP genotypes (nucleotide variability up to 4.3%) and four RFLP genotypes including B, F and newly described S and T genotypes. Genotype frequency was significantly greater in symptomatic compared to asymptomatic individuals. Both methods similarly grouped parasites as predominantly or exclusively found in humans, in dogs, in wildlife or in all three of them. Accordingly, the phylogenetic analysis of kDNA sequences revealed three main clusters, two as a paraphyletic human parasites clade and a third including dogs, people and wildlife parasites. Results suggest that Leishmania infantum genetics is complex even in small geographical areas and that, probably, several independent transmission cycles take place simultaneously including some connecting animals and humans. Investigating these transmission networks may be useful in understanding the transmission dynamics, infection risk and therefore in planning L.infantum control strategies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call