Abstract

Abstract Water deficit is one of the most important abiotic stresses constraining crop production in rapeseed. Understanding the mechanisms of adaptation to this stress is essential for the development and production of drought-tolerant genotypes. For this reason, this research study aims to investigate the importance of genetic diversity in identifying genotypes with a high degree of drought tolerance through assessing effectiveness of inter simple sequence repeat (ISSR) markers on 14 genotypes of rapeseed in a factorial design. Morphological and physiological characteristics were studied after the early stages of growth; in order to evaluate the genetic diversity among genotypes, 18 different ISSR markers were used. A total of 106 clear and scalable loci were amplified, of which 60 bands (56.6%) were polymorphic. The highest polymorphism information content belonged to marker number 9 with the amount of 0.365 (85.7%). Gene variation ranged from 0.081 to 0.365 and the rapeseed genotypes were divided into three groups by cluster analysis (unweighted pair group method with arithmetic mean method). The analysis of molecular variance showed that 70% of the total variation was observed within populations and 30% of this variation occurred among populations. In addition, t-test was used for comparing oil content percentage among different genotypes in control and stress levels. Adriana had the highest amount of seed oil with 36.47%, whereas Karaj 2 had the lowest amount with 27.28 and Cooper had the highest decrease in oil content percentage under stress conditions. Overall, the genotypes Likord, Hyola 401 and Sarigol 32 were identified as the most drought-tolerant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call