Abstract

Turbot (Scophthalmus maximusL., 1758) is a valuable commercial fish species classified as endangered. The conservation and sustainability of the turbot populations require knowledge of the population’s genetic structure and constant monitoring of its biodiversity. The present study was performed to evaluate the population structure of turbot along the Bulgarian Black Sea coast using seven pairs of microsatellites, two mitochondrial DNA (COIII and CR) and 23 morphological (15 morphometric and 8 meristic) markers. A total of 72 specimens at three locations were genotyped and 59 alleles were identified. The observed number of alleles of microsatellites was more than the effective number of alleles. The overall mean values of observed (Ho) and expected heterogeneity (He) were 0.638 and 0.685. A high rate of migration between turbot populations (overall mean of Nm = 17.484), with the maximum value (19.498) between Shabla and Nesebar locations, was observed. This result corresponded to the low level of genetic differentiation amongst these populations (overall mean Fst = 0.014), but there was no correlation between genetic and geographical distance. A high level of genetic diversity in the populations was also observed. The average Garza-Williamson M index value for all populations was low (0.359), suggesting a reduction in genetic variation due to a founder effect or a genetic bottleneck. Concerning mitochondrial DNA, a total number of 17 haplotypes for COIII and 41 haplotypes for CR were identified. The mitochondrial DNA control region showed patterns with high haplotype diversity and very low nucleotide diversity, indicating a significant number of closely-related haplotypes and suggesting that this population may have undergone a recent expansion. Tajima’s D test and Fu’s FS test suggested recent population growth. Pairwise Fst values were very low. The admixture and lack of genetic structuring found pointed to the populations analysed probably belonging to the same genetic unit. Therefore, a proper understanding and a sound knowledge of the level and distribution of genetic diversity in turbot is an important prerequisite for successful sustainable development and conservation strategies to preserve their evolutionary potential.

Highlights

  • Over the past few decades, human impacts on wild fish populations have increased drastically worldwide as a result of extensive aquaculture, exploitation of fish stocks for global consumption and human-induced climate changes (Olsson et al 2007)

  • The aim of the present study is to evaluate the population genetic diversity of three turbot populations along the Bulgarian Black Sea coast and its applicability for the purposes of monitoring and conservation of genetic diversity in terms of sustainable management and rational exploitation of stocks

  • Reasonable amount of polymorphism in turbot was evident from the allele frequency data, with the mean number of alleles (MNA) being 6.330 ± 0.634

Read more

Summary

Introduction

Over the past few decades, human impacts on wild fish populations have increased drastically worldwide as a result of extensive aquaculture, exploitation of fish stocks for global consumption and human-induced climate changes (Olsson et al 2007). Loss of genetic diversity can reduce the adaptability, lessen the population persistence and lead to a decrease in the productivity of the target species. Such genetic diversity reductions in some of the world’s most abundant species may add to the growing long-term impact of fishing on their evolutionary potential, with the abundance staying low and diversity continuing to erode (Pinsky and Palumbi 2014)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call