Abstract

The Manchurian trout, Brachymystax lenok tsinlingensis (family: Salmonidae), is a cold freshwater fish endemic to Northeast Asia. South Korean populations of this species, which comprise its southern range limit, have recently decreased markedly in size and are now becoming critically endangered. We assessed the current population status of this species in South Korea by estimating the levels of genetic diversity and genetic structure of five natural and four restored populations using mitochondrial DNA (mtDNA) control region sequences and eight nuclear microsatellite loci. Levels of within-population genetic diversity were low, suggesting that past effective population sizes (N e) have been small. Each population had one or a maximum of two mtDNA haplotypes. Microsatellite allelic richness (AR) was significantly higher for natural populations (mean AR = 3.51; 95% confidence interval, 3.00–4.03) than for restored populations (mean AR = 2.61; 2.38–2.98). South Korean populations were significantly genetically isolated from one another, with private mtDNA haplotypes and microsatellite alleles, suggesting that limited gene flow has been occurring among populations. A mtDNA phylogeny revealed that South Korean lineages were more closely related to those of China than to those of North Korea and Russia. Overall, we suggest that future restoration efforts aimed at South Korean populations should consider the genetic characteristics reported here, which should help to fulfil effective conservation strategies for this highly cherished species. Our results will inform other conservation efforts, including assisted migration of freshwater fish populations at the equatorial end of the geographical range limit of the species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call