Abstract

To explore the genetic diversity and distribution of rhizobia in the rhizosphere of soybean grown in red soil, we have collected 21 soil samples from soybean fields across seven counties in Hunan province, China. MiSeq sequencing of rpoB gene was used to determine the intra-species diversity of rhizobia existing in soybean rhizospheres. Soil chemical properties were determined by routine methods. The Principal Coordinates Analysis (PCoA) plot indicated a clear biogeographical pattern characterizing the soybean rhizosphere across different sites. The Mantel test demonstrated that biogeographical pattern was significantly correlated with the geographical distance (Mantel statistic R 0.385, p < 0.001). There were obvious differences in the rhizobial communities among northeastern eco-region, southeastern eco-region and western eco-region. In general, Bradyrhizobium diazoefficiens was the most abundant rhizobial species in the soybean rhizosphere. At an intermediate (10-400km) spatial scale, the biogeographical pattern of rhizobial communities in soybean rhizosphere is associated with both soil properties and geographical distance. Redundancy analysis (RDA) showed that total potassium (TK), available potassium (AK), soil organic carbon (SOC), and available nitrogen (AN) were the main factors that influenced the α-diversity of rhizobial communities. Canonical correspondence analysis (CCA) showed that pH and exchangeable Ca and Mg had the greatest influence on the β-diversity of the rhizobial communities in the soybean rhizosphere. These findings characterize the distribution pattern and its influencing factors of soybean rhizobia in rhizosphere in Hunan province, which may be helpful in selecting suitable strains or species as inoculants for soybeans in red soil regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call