Abstract
The CRESS-DNA viruses are the ubiquitous virus detected in almost all eukaryotic life trees and play an essential role in the maintaining ecosystem of the globe. Still, their genetic diversity is not fully understood. Here, we bring to light the genetic diversity of replication (Rep) and capsid (Cap) proteins of CRESS-DNA viruses. We divided the Rep protein of the CRESS-DNA virus into 10 clusters using CLANS and phylogenetic analyses. Also, most of the Rep protein in Rep cluster 1 (R1) and R2 (Circoviridae, Smacoviridae, Nanoviridae, and CRESSV1-5) contain the Viral_Rep superfamily and P-loop_NTPase superfamily domains, while the Rep protein of viruses in other clusters has no such characterized functional domain. The Circoviridae, Nanoviridae, and CRESSV1-3 viruses contain two domains, such as Viral_Rep and P-loop_NTPase; the CRESSV4 and CRESSV5 viruses have only the Viral_Rep domain; most of the sequences in the pCRESS-related group have only P-loop_NTPase; and Smacoviridae do not have these two domains. Further, we divided the Cap protein of the CRESS-DNA virus into 20 clusters using CLANS and phylogenetic analyses. The Rep and Cap proteins of Circoviridae and Smacoviridae are grouped into a specific cluster. Cap protein of CRESS-DNA viruses grouped with one cluster and Rep protein with another cluster. Further, our study reveals that selection pressure plays a significant role in the evolution of CRESS-DNA viruses' Rep and Cap genes rather than mutational pressure. We hope this study will help determine the genetic diversity of CRESS-DNA viruses as more sequences are discovered in the future. IMPORTANCE The genetic diversity of CRESS-DNA viruses is not fully understood. CRESS-DNA viruses are classified as CRESSV1 to CRESSV6 using only Rep protein. This study revealed that the Rep protein of the CRESS-DNA viruses is classified as CRESSV1 to CRESSV6 groups and the new Smacoviridae-related, CRESSV2-related, pCRESS-related, Circoviridae-related, and 1 to 4 outgroups, according to the Viral_Rep and P-loop_NTPase domain organization, CLANS, and phylogenetic analysis. Furthermore, for the first time in this study, the Cap protein of CRESS-DNA viruses was classified into 20 distinct clusters by CLANS and phylogenetic analysis. Through this classification, the genetic diversity of CRESS-DNA viruses clarifies the possibility of recombinations in Cap and Rep proteins. Finally, it has been shown that selection pressure plays a significant role in the evolution and genetic diversity of Cap and Rep proteins. This study explains the genetic diversity of CRESS-DNA viruses and hopes that it will help classify future detected viruses.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.