Abstract

Association mapping was performed for 18 agromorphological and grain quality traits in a set of 183 Spanish landraces, including subspecies durum, turgidum and dicoccon, genotyped with 749 DArT (Diversity Array Technology) markers. Large genetic and phenotypic variability was detected, being the level of diversity among the chromosomes and genomes heterogeneous, and sometimes complementary, among subspecies. Overall, 356 were monomorphic in at least one subspecies, mainly in dicoccon, and some of them coincidental between subspecies, especially between turgidum and dicoccon. Several of those fixed markers were associated to plant responses to environmental stresses or linked to genes subjected to selection during tetraploid wheat domestication process. A total of 85 stable MTAs (marker–trait associations) have been identified for the agromorphological and quality parameters, some of them common among subspecies and others subspecies-specific. For all the traits, we have found MTAs explaining more than 10% of the phenotypic variation in any of the three subspecies. The number of MTAs on the B genome exceeded that on the A genome in subsp. durum, equalled in turgidum and was below in dicoccon. The validation of several adaptive and quality trait MTAs by combining the association mapping with an analysis of the signature of selection, identifying the putative gene function of the marker, or by coincidences with previous reports, showed that our approach was successful for the detection of MTAs and the high potential of the collection to identify marker–trait associations. Novel MTAs not previously reported, some of them subspecies specific, have been described and provide new information about the genetic control of complex traits.

Highlights

  • Durum wheat (Triticum turgidum L. subsp. durum) is an important food crop grown on about 13 million hectares worldwide

  • Sucrose, and polyethylene foil calibrated against Pee Dee belemnite (PDB) carbonate were used for comparison

  • We have carried out a genetic diversity analysis of a collection of Triticum turgidum L. constituted by a large set of landraces of subsp. durum and by a number of turgidum and dicoccon landraces selected to represent the subspecies diversity in the collection [16]

Read more

Summary

Introduction

Durum wheat (Triticum turgidum L. subsp. durum) is an important food crop grown on about 13 million hectares worldwide. Durum) is an important food crop grown on about 13 million hectares worldwide. This wheat subspecies is mostly used for pasta manufacturing, but it is the raw material for producing other traditional goods such as flat breads, couscous and bulgur. In the Mediterranean basin, it is a crop of strategic importance with about 60% of the world durum-growing area. In this region, durum wheat is grown in a range of climatic zones varying from warm and dry to cool and wet [1]. Wheat landrace collections contain wider genetic diversity than most breeding programmes and constitute an transferable and valuable source of genetic variation for agronomical, morphological, adaptive and quality traits

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call