Abstract

Genetic variation among five elite winter barley cultivars (H. vulgare L.) currently grown in Bulgaria was assessed at the molecular level using restriction fragment length polymorphism (RFLP) and randomly amplified polymorphic DNA (RAPD) markers. The present study sampled RFLPs in four well characterized multigene families in barley: the seed storage protein loci; the 18S, 5.8S and 26S ribosomal DNA loci; the loci coding for 5S ribosomal RNA and the loci coding subunit α of ATP-A complex in the mitochondrial genome. RFLPs were detected in three out of five investigated chromosomal loci in the barley cultivars studied. RAPD assay using arbitrary 10-base primers was applied to generate amplified length polymorphic markers in barley. Overall a total of 15 polymorphic phenotypes were found among the studied barley cultivars by using 11 out of 25 tested primers. All RAPDs were considered as dominant genetic markers except for two, where PCR and Southern blot analysis indicated the presence of codominant amplification products. Five RAPD polymorphisms in F1 and F2 progenies of the cross between Alpha and Obzor were inherited in Mendelian fashion. The determined values for the genetic variation proved a high genetic similarity among the tested cultivars. Genetic similarity (GS) calculated from RFLP and RAPD data ranged from 0.888 to 0.997 with a mean GS – 0.933.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call