Abstract

Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F′ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken.

Highlights

  • The Australian arid zone occupies 70% of the continent’s landmass and supports an extraordinary biodiversity, including among the world’s richest assemblages of lizards [1], [2]

  • We show genetic partitioning among regions containing the Vulnerable lizard Liopholis kintorei

  • Our estimates of genetic divergence, in addition to environmental differences experienced among regions, indicate that each of these are reservoirs of important genetic variation and point to the risk of outbreeding depression should interbreeding occur

Read more

Summary

Introduction

The Australian arid zone occupies 70% of the continent’s landmass and supports an extraordinary biodiversity, including among the world’s richest assemblages of lizards [1], [2]. Despite a longstanding recognition of the conservation value of this region, relatively few studies have described patterns of genetic structuring across whole species distributions [3]. Characterisation of genetic structure across a landscape is valuable to inform conservation because. Regional Genetic Structure of a Threatened Lizard. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.